Professor Oldham Spring 2001

EECS 42 — MIDTERM #1

	22 February 2001			
Name:				Student ID:
	Last,	First		
Signature	:			

Guidelines:

- 1. Closed book. A 2-page summary sheet with formulas is provided at the end of the exam.
- 2. Show all your work and reasoning on the exam in order to receive credit.
- 3. Warning: Some problems will be graded with no partial credit, so check your answers.
- 4. You may use a calculator.
- 5. Do not unstaple the exam.
- **6.** This exam contains 5 problems worth 20 points each, and corresponding worksheets plus the cover page and the 2-page summary sheet.
- 7. Please do not ask questions except to point out possible errors or typographical mistakes.

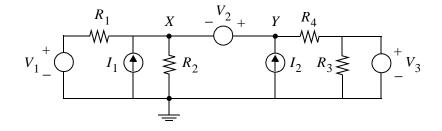
Problem	Points Possible	Your Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Problem 1 (20 points)

In the circuit below we are interested in the voltage at nodes *X* and *Y* and use nodal analysis.

(a) Some possible nodal equations are given below. Circle the equation that is correct. (If none are correct, then correct one and circle it.)

(a.1)
$$V_1/R_1 - I_1 - V_X/R_2 = I_2 - V_Y/R_3$$


(a.2)
$$V_1/R_1 + V_3/R_4 = 0$$

(a.3)
$$I_1 + I_2 + V_1/R_1 + V_3/R_4 + V_3/R_3 = 0$$

(a.4)
$$V_1/R_1 + I_1 - V_X/R_2 + I_2 + (V_3 - V_Y)/R_4 = 0$$

(a.5)
$$(V_1 - V_X)/R_1 + I_1 - V_X/R_2 = -I_2 + (V_Y - V_3)/R_4$$

(a.6)
$$(V_1 - V_X)/R_1 + I_1 - V_X/R_2 = (V_2 - V_3)/R_4$$


(b) What other equation, if any, is needed to solve for V_X and V_Y ? Write it in the box below, BUT DO NOT SOLVE for V_X and V_Y .

Answer here ──→	
-----------------	--

Problem 1 Worksheet

Problem 2 (20 points)

In the circuit below, the switch is operated at $t = 1 \mu sec$ (in other words, the capacitor is switched from node L to node R).

(a) Find V_X , the voltage at node X, for $t < 1 \mu sec$.

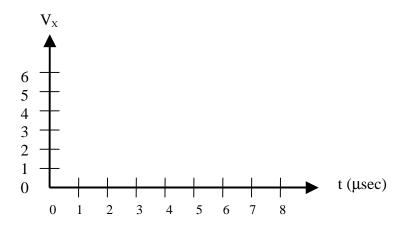
(**Note**: Answer must be in the box.)

a) $V_X =$

(b) Find V_X for $t = 1 \mu \text{sec}$ (just after switch moves).

(**Note**: Answer must be in the box.)

 $\mathbf{b)} \qquad V_X =$

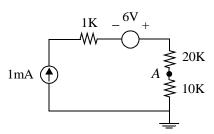

(c) Find V_X for $t \to \infty$.

(**Note**: Answer must be in the box.)

c) $V_X =$

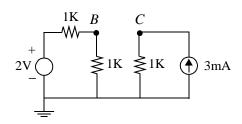
(d) Sketch neatly on the axes below a plot of ${\it V}_{\it X}$ versus time.

(Warning: Neatness and accuracy will be rewarded.)

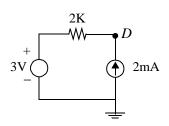


Problem 2 Worksheet

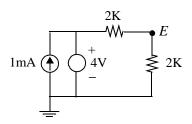
Problem 3 (20 points)


Find the voltage indicated for each of the following circuits. (The answer MUST be in the box provided.)

(a) Find V_A .


 $V_A =$

(b) Find V_{BC} .


 $V_{BC} =$

(c) Find V_D .

 $V_D =$

(d) Find V_E .

 $V_E =$

Problem 3 Worksheet

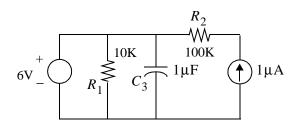
Problem 4 (20 points)

For the circuit below, calculate the following quantities. (Note that the sign is important and the answer must appear in the box.) This is a DC, not a transient, problem.

(a) P_1 , the power into (dissipated in) resistor R_1 .

 $P_1 =$

(b) P_2 , the power into (dissipated in) resistor R_2 .

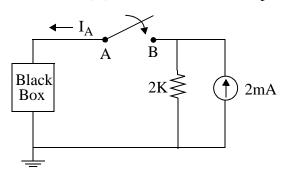

 $P_2 =$

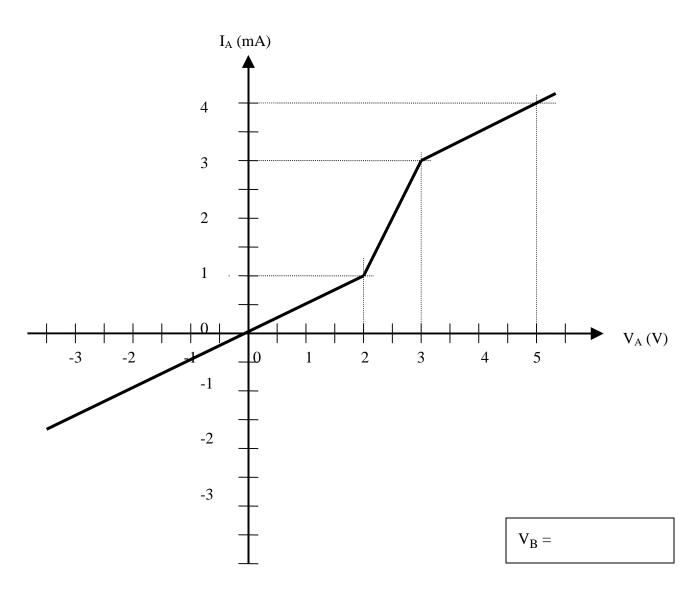
(c) P_3 , the power into capacitor C_3 .

 $P_3 =$

(d) P_4 , the power into the current source.

 $P_4 =$




Problem 4 Worksheet

Problem 5 (20 points)

The circuit below consists of two parts: 1) a "black box" that has the nonlinear I-V characteristics shown on graph I_A versus V_A , and 2) a simple resistor in parallel with a current source. When the switch is open, it is obvious that $V_A=0$ and $V_B=4V$.

Use the load-line method to find the approximate value of V_B when the switch is closed. (IMPORTANT: You must show your work to receive credit.) (Also note: This is a DC problem, not a transient problem.)

Problem 5 Worksheet